摘要:
多年來,藥物開發(fā)的瓶頸一直是在合成這個步驟上,其原因在于用以驅(qū)使合成反應(yīng)的方式一直是傳??的熱力加熱。而技術(shù)的開發(fā)讓微波成為加熱反應(yīng)更有效的方法。那些本需要幾小時,甚至幾能才能??成的合成反應(yīng)現(xiàn)在只需幾分鐘,因而讓有機(jī)化學(xué)家們有更多的時間用以分析和優(yōu)化??們的反應(yīng),使??們更有創(chuàng)造性。微波合成包括很多有優(yōu)點(diǎn),例如反應(yīng)??率的??升,產(chǎn)率的??高和 “更干凈”的化學(xué)。由 CEM ??開發(fā)的新型微波環(huán)形單膜腔把??有傳??合成設(shè)備的優(yōu)點(diǎn)以及微波??間加熱的能力結(jié)合于一個簡潔但具有強(qiáng)大作用的儀器上。Abbott 實驗室(芝加哥、伊利諾??)使用此儀器執(zhí)行了針對藥物開發(fā)的合成反應(yīng)。化學(xué)家們發(fā)現(xiàn)環(huán)形單膜腔輔助有機(jī)合成的好處是在傳??方法和從前的微波方法上的大量改良。
使用傳統(tǒng)熱傳導(dǎo)加熱法使得藥物合成在藥物開發(fā)過程中是一個緩慢而??勁的步驟,但是zui近新一代的微波合成儀器為化學(xué)家們提供了足以在幾分鐘內(nèi), 取代了傳統(tǒng)上的幾小時甚至幾天, 完成反應(yīng)的有力工具。此外,化學(xué)家們也發(fā)現(xiàn)它們能提升產(chǎn)率,減少副反應(yīng),和降低完成反應(yīng)所需要的溶劑。
微波是一種處于電磁譜末端的電磁能。雖然微波包含著一個電??和一個磁??,但是只有電??將能量轉(zhuǎn)移用以加熱一個物質(zhì)。與平?;瘜W(xué)鍵的能量(80-120kcal/mol)比起來,微波光子的能量相當(dāng)小(0.03 kcal/mol),所以不會直接對分子結(jié)構(gòu)產(chǎn)生影響。因此吸收了微波所引起的效果于分子活動上。
微波通過兩種作用將能量傳遞至一個物質(zhì)上。在偶極旋轉(zhuǎn)中,極性分子會試圖與微波的電??對齊。而分子試圖在電??中定位所引起的運(yùn)動造成能量的轉(zhuǎn)移。離子傳導(dǎo)是第二種能量轉(zhuǎn)移的方法。當(dāng)在被加熱的物質(zhì)中有自由的離子存在時,電??所引起的離子活動造成快速的加熱。當(dāng)物質(zhì)的溫度升高,能量的轉(zhuǎn)移就更有效率。微波的能量轉(zhuǎn)移比分子的松弛來得要快,形成不平衡的能量轉(zhuǎn)換和影響系統(tǒng)動力學(xué)的瞬間高溫。
大部分早期的微波合成是在多模系統(tǒng)中所做的。這些系統(tǒng)有較大的腔體并且被成功的應(yīng)用于含有多種樣品的合成反應(yīng),甚至體積大于 1 升的反應(yīng)。然而藥物開發(fā)*的小??獨(dú)立樣品合成反應(yīng)在多模系統(tǒng)中存在著許多問題,因為多模儀器腔體的設(shè)計本身就有著冷點(diǎn)與熱點(diǎn)的問題存在,造成對小??獨(dú)立樣品加熱的困難。
在過去十年中,有著統(tǒng)一能量分配和能更有效的應(yīng)用于小??樣品的單模腔微波儀器在市面上問世。這些新??腔體更適合於藥物開發(fā)方面的工作,因為高能量密度使得能量被更有效的聚焦。然而,假若在一單模腔中,樣品的大小或極性有所變動,便能大規(guī)模的影響微波與樣品的配合。由于這個原因,單模腔體系統(tǒng)通常需要某種手動的調(diào)諧裝置。
圖表 1: Discover 的單膜微波腔
zui早的單模腔設(shè)計包括了一個磁控管、一個方形的波導(dǎo)(微波腔)和一個手動調(diào)諧裝置用以調(diào)節(jié)樣品能量吸收的效率。zui近微波科技的突破使得單模腔儀器有相當(dāng)大的改良,使得手動調(diào)諧成為歷史。由美國CEM研制生產(chǎn)的Discover系統(tǒng)是世界上*專為藥物研究而設(shè)計的諧振單膜微波合成系統(tǒng)(圖1),該系統(tǒng)的環(huán)形單膜腔設(shè)計為微波合成提供了*的能量輸出,減少了副產(chǎn)物,并提高了產(chǎn)率。在此設(shè)計中微波穿過一個到多個波導(dǎo)腔中的狹縫,根據(jù)樣品的溫度自動調(diào)整、補(bǔ)償反應(yīng)所需能量。
相對于CEM的前一代儀器及其他廠家的微波合成儀器這種環(huán)形單膜腔容量更大,并且在使用上更加具有彈性:它可以使用體積從1ml到125ml不等的容器。Discover還能在開放容器內(nèi)進(jìn)行傳統(tǒng)的常壓反應(yīng)試驗,并且在加熱過程中配備了冷凝回流裝置和試劑添加裝置。另外Discover系統(tǒng)還為化學(xué)家們提供了電磁攪拌裝置和快速冷卻裝置,前者提高了各種試劑的混合度,后者通過壓縮氣體的注入來冷卻反應(yīng),降低了反應(yīng)的熱滯性,因而大大減少了副反應(yīng),提高了產(chǎn)出率。Discover系統(tǒng)包含了所有傳統(tǒng)方法的優(yōu)點(diǎn)以及微波合成率、高產(chǎn)率的特點(diǎn),此外它不但能應(yīng)用于液相合成反應(yīng),而且還能應(yīng)用于固相合成和無溶劑合成。
該系統(tǒng)配有壓控及溫控裝置。通過增加壓力可以提高樣品的沸點(diǎn),進(jìn)而加快反應(yīng)速度,壓力范圍在0-20 bar 之間。的紅外溫控技術(shù)能的測量反應(yīng)體系的溫度,并保證樣品的溫度不會超過設(shè)定溫度以確保整個反應(yīng)在*化的條件下進(jìn)行。
微波作為一種加速加熱過程的工具是非常有效的,它可以使樣品溫度瞬間上升,致使反應(yīng)速度較常規(guī)方法快10到1000倍,并且提高產(chǎn)率50到100%,甚至是對那些產(chǎn)率極低的合成反應(yīng)。因為微波能快速的與反應(yīng)物耦合,使得微波能夠廣泛應(yīng)用于多相合成反應(yīng)之中,尤其是在聚合物載體上的反應(yīng),微波能夠大幅縮短反應(yīng)時間。由于具有這樣的特性,微波成為固態(tài)和無溶劑合成反應(yīng)的*熱源。
由于微波不能加熱非極性物質(zhì),所以我們可以通過在反應(yīng)體系中加入一些非極性物質(zhì)降低反應(yīng)物的溫度,使微波也能作為一些熱敏合成反應(yīng)的熱源。非極性溶劑在反應(yīng)體系中扮演冷源的角色,它們能吸收多余的熱量以降低反應(yīng)物的溫度,并且不削弱反應(yīng)物被微波瞬間加熱的特性。
圖表 2: 親核芳香取代反應(yīng)
圖2中所顯示的反應(yīng)是由Abbott(Chicago, IL)實驗室的Anil Vasudevan 博士所做的親核芳香取代反應(yīng)。他用Discover有機(jī)合成系統(tǒng)把不同類型的配合基分別連接到一個基本分子骨架上,生成八種不同的化合物,此過程反應(yīng)溫度175℃,僅需10分鐘即可完成。Vasudevan 博士還通過該儀器利用烷基溴對苯酚化合物進(jìn)行烷基取代的合成反應(yīng)展示了微波在固相合成中的(圖3)??梢钥闯鲞@兩個反應(yīng)的產(chǎn)率都有所提高,并且反應(yīng)速度都有顯著的提高。
圖表 3: 苯酚化合物的烷基取代合成反應(yīng)
Vasudevan 博士還利用Discover有機(jī)合成系統(tǒng)完成了四氫嘧啶的Bignelli合成試驗(圖4)及1,3,4-二唑的合成反應(yīng)。Bignelli合成反應(yīng)是一個三元縮合反應(yīng),利用Discover系統(tǒng)可把反應(yīng)溫度保持在170℃,僅需5分鐘就能完成,且產(chǎn)率可達(dá)到60-90%,而此反應(yīng)常規(guī)方法在150℃下需要一個半小時才能完成。從中可以看出微波加熱可使反應(yīng)溫度提高10-20℃,這就是反應(yīng)速度提高數(shù)十倍的原因。
圖表 4: 四氫嘧啶的Bignelli合成
許多研究人員通過微波輔助合成來完成那些對藥物開發(fā)有重要意義的合成試驗,這當(dāng)中包括鈀催化反應(yīng)。*個通過微波來完成的鈀催化反應(yīng)是由印度的A.Wali博士等人于1994-95年在CEM的微波系統(tǒng)中實現(xiàn)的. 鈀催化反應(yīng)中生成的C-C鍵在合成化學(xué)中極其重要。A.Wali博士等人使用多膜微波合成儀器完成了碘代苯與1-癸烯的Heck反應(yīng),此反應(yīng)在微波下僅需10min,而傳統(tǒng)方法卻需要14個小時。
1995年Villemin博士(ENSL de Caen, Caen, France)在西班牙的一次學(xué)術(shù)會議上發(fā)表了以單模微波為熱源的鈀催化反應(yīng)報告,他僅用了140W的功率在10分鐘內(nèi)就成功的完成了由鈀催化的Heck反應(yīng)(圖5)。
圖表 5: 微波助效鈀催化Heck反應(yīng)
自從1996年M.Larhed和A.Hallberg博士(Uppsala大學(xué),瑞典)發(fā)表了*篇關(guān)于微波應(yīng)用于鈀催化反應(yīng)的報告之后,他們又陸續(xù)以同一課題發(fā)表了多篇研究報告,通過這些研究他們向人們展示了微波在鈀催化反應(yīng)中的眾多優(yōu)點(diǎn)。
微波加熱的速度有著另外一些優(yōu)點(diǎn)。它可以讓化學(xué)家們有足夠的時間來分析反應(yīng),以優(yōu)化反應(yīng)并提高產(chǎn)率。
微波輔助合成是一個在逐漸完善的新興領(lǐng)域。在未來幾年中它對藥物研發(fā)和醫(yī)藥化學(xué)將發(fā)揮重要作用。這項技術(shù)zui終將會取代電熱板等傳統(tǒng)加熱方式,而微波儀器也會逐步完善。CEM的Discover系統(tǒng)已經(jīng)有幾種不同的機(jī)型問世。
Discover的先進(jìn)技術(shù)使的它的使用者有足夠的時間來思考和創(chuàng)新。由于藥物合成本來就已經(jīng)夠復(fù)雜了,所以操作復(fù)雜或需要由多人操作輔助合成儀器是不可取的,而CEM的Discover系統(tǒng)操作靈活,易用,集速度和能力與一身,是有機(jī)合成化學(xué)家們的理想選擇。
作者M(jìn)ichael J. Colins博士是CEM Corp.的執(zhí)行總裁兼總。他于1978年以優(yōu)等成績?nèi)〉没瘜W(xué)學(xué)士學(xué)位,并隋后取得物理化學(xué)博士學(xué)位。Collins博士曾多次取得各項企業(yè)家獎項,并于1990年被Inc.雜志評為“1990年企業(yè)家”。他現(xiàn)在是ALSSA(Analytical & Life Science System Association)的成員,并曾是此組織的理事長。他曾多次于各個行業(yè)雜志上被刊出,并參與了屬于ACS專業(yè)參考書目,“微波樣品處理入門”一書的著作。